Nonlinear conformally invariant generalization of the Poisson equation toD>2dimensions
نویسندگان
چکیده
منابع مشابه
Degenerate Conformally Invariant Fully Nonlinear Elliptic Equations
There has been much work on conformally invariant fully nonlinear elliptic equations and applications to geometry and topology. See for instance [17], [5], [4], [10], [14], [9], and the references therein. An important issue in the study of such equations is to classify entire solutions which arise from rescaling blowing up solutions. Liouville type theorems for general conformally invariant fu...
متن کاملOn Some Conformally Invariant Fully Nonlinear Equations
We will report some results concerning the Yamabe problem and the Nirenberg problem. Related topics will also be discussed. Such studies have led to new results on some conformally invariant fully nonlinear equations arising from geometry. We will also present these results which include some Liouville type theorems, Harnack type inequalities, existence and compactness of solutions to some nonl...
متن کاملGroup Invariant Solutions of Burgers-Poisson Equation
In this paper, a nonlinear dispersive wave equation Burgers-Poisson (BP) equation is considered. We present a classification of group invariant solutions for the BP equation by using classical Lie method. Mathematics Subject Classification; 35Q53
متن کاملScattering and Complete Integrability in Conformally Invariant Nonlinear Theories
We study conformally invariant nonlinear wave equations in four dimensions corresponding to multicomponent massless scalar elds with a quartic interaction. We prove that the scattering operator S on the space H of nite-Einstein-energy Cauchy data has innnitely many xed points, as well as periodic points of all orders. There are also 2 H such that S n is almost periodic but not periodic, and 2 H...
متن کاملConformally invariant fully nonlinear elliptic equations and isolated singularities
1 Introduction There has been much work on conformally invariant fully nonlinear elliptic equations and applications to geometry and topology. [10], and the references therein. In this and a companion paper [16] we address some analytical issues concerning these equations. For n ≥ 3, consider −∆u = n − 2 2 u n+2 n−2 , on R n .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1997
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.56.1148